Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Vet Diagn Invest ; 34(6): 1015-1019, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2153397

ABSTRACT

Albendazole is a widely used anthelmintic drug that is labeled for the treatment of specific nematodes and flukes in ruminants. Albendazole is approved for the treatment of liver flukes in goats (10 mg/kg PO for a single dose), but is commonly used extra-label in situations in which parasite resistance is an issue. Albendazole toxicosis has been reported in pigeons, doves, alpacas, humans, dogs, and cats. Here we report an adverse event in a 6-mo-old goat associated with extra-label use of albendazole (35.7 mg/kg PO daily for 3 d). Clinicopathologic findings included severe diarrhea and death, with small intestinal crypt necrosis and dysplasia, and severe bone marrow hypoplasia. Microbial and molecular testing and transmission electron microscopy ruled out infectious organisms. The described pathologic changes are similar to those reported in other species that have experienced toxicosis associated with albendazole. To our knowledge, bone marrow and intestinal lesions associated with albendazole use in the goat have not been reported previously. Veterinarians should be aware of potential adverse events and toxicoses associated with anthelmintic drugs, especially as parasite resistance increases, and extra-label usage, and the use of such drugs without veterinary supervision, becomes more common.


Subject(s)
Anthelmintics , Dog Diseases , Goat Diseases , Animals , Dogs , Humans , Albendazole/adverse effects , Goats , Parasite Egg Count/veterinary , Bone Marrow , Goat Diseases/drug therapy , Ivermectin/therapeutic use , Feces/parasitology , Anthelmintics/adverse effects , Ruminants , Dog Diseases/drug therapy
2.
PLoS Negl Trop Dis ; 16(10): e0010898, 2022 10.
Article in English | MEDLINE | ID: covidwho-2098682

ABSTRACT

Rift Valley fever (RVF) is a disease of animals and humans associated with abortions in ruminants and late-gestation miscarriages in women. Here, we use a rat model of congenital RVF to identify tropisms, pathologies, and immune responses in the placenta during vertical transmission. Infection of late-gestation pregnant rats resulted in vertical transmission to the placenta and widespread infection throughout the decidua, basal zone, and labyrinth zone. Some pups from infected dams appeared normal while others had gross signs of teratogenicity including death. Histopathological lesions were detected in placenta from pups regardless of teratogenicity, while teratogenic pups had widespread hemorrhage throughout multiple placenta layers. Teratogenic events were associated with significant increases in placental pro-inflammatory cytokines, type I interferons, and chemokines. RVFV displays a high degree of tropism for all placental tissue layers and the degree of hemorrhage and inflammatory mediator production is highest in placenta from pups with adverse outcomes. Given the potential for RVFV to emerge in new locations and the recent evidence of emerging viruses, like Zika and SARS-CoV-2, to undergo vertical transmission, this study provides essential understanding regarding the mechanisms by which RVFV crosses the placenta barrier.


Subject(s)
COVID-19 , Rift Valley Fever , Rift Valley fever virus , Zika Virus Infection , Zika Virus , Humans , Female , Pregnancy , Rats , Animals , Rats, Sprague-Dawley , Placenta/pathology , SARS-CoV-2 , Ruminants
3.
Vet Res Commun ; 46(4): 1011-1022, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2048466

ABSTRACT

Foot-and-mouth disease (FMD) is a major disease of livestock in India and causes huge economic losses. The formal FMD control program started in 2003-04 in selected districts and was gradually expanded. The present study provides a descriptive review of the FMD outbreaks, prevalent serotypes, and genetic and antigenic features of the FMD virus (FMDV) that circulated in the country between 2011 and 2020. FMD outbreaks were regularly reported in cloven-hoofed domestic livestock and wildlife, with three serotypes including O, A, and Asia1. During the study period, a total of 2226 FMD outbreaks were documented and serotypes confirmed. FMDV serotype O dominated the outbreak scenario, accounting for about 92% of all outbreaks, followed by Asia1 (5% of all outbreaks) and A (3% of all outbreaks). Two major epidemics of FMD on an unprecedented scale during the years 2013 and 2018 by serotype O were recorded. The spatial distribution of FMD was characterized by a larger number of outbreaks in the southern region of the country. In an annual-scale analysis, 2020 was the year with the lowest outbreaks, and 2013 was the year with the highest. The month-scale analysis showed that outbreaks were reported throughout the year, with the highest numbers between October and March. The emergence of three major lineages (O/ME-SA/Ind2001d, O/ME-SA/Ind2001e, and O/ME-SA/Ind2018) of serotype O was observed during the period. In the cases of serotype A and Asia1, the appearance of at least one novel lineage/genetic group, including A/G-18/non-deletion/2019 and Asia1/Group-IX, was documented. While serotype A showed the advent of antigenic variants, serotypes O and Asia1 did not show any antigenic diversity. It was noticed during the course of an outbreak that animal movement contributes significantly to disease transmission. Except for 2018, when numerous FMD outbreaks were recorded, the number of annual outbreaks reported after 2016 has been lower than in the first half of the decade, probably due to mass vaccination and COVID-19 pandemic-linked movement restrictions. Even during outbreaks, disease symptoms in ruminant populations, including cattle, were found to be less severe. Regular six-monthly immunization certainly has a positive impact on the reduction of disease burden and should be followed without fail and delay, along with intensive disease surveillance.


Subject(s)
COVID-19 , Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Cattle , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Pandemics , COVID-19/veterinary , Foot-and-Mouth Disease Virus/genetics , Disease Outbreaks/veterinary , Serogroup , Ruminants , Phylogeny
4.
Vet Parasitol Reg Stud Reports ; 33: 100753, 2022 08.
Article in English | MEDLINE | ID: covidwho-1984223

ABSTRACT

Tick-borne pathogens (TBPs) pose an increased health and productivity risk to livestock in sub-Saharan Africa. Information regarding TBPs infecting small ruminants in Kano metropolis is scarce. Therefore, we investigated the molecular epidemiology of tick-borne pathogens of economic importance from sheep and goats in Kano, Nigeria using Polymerase chain reaction (PCR). A total of 346 blood DNA samples were collected from small ruminants and analyzed for TBPs using PCR and sequencing. Risk of infection was determined for age, sex, breed and animal species. Our results indicate the absence of piroplasmids (Babesia/Theileria) and Rickettsia spp. infections. The overall prevalence for Anaplasma spp. was 9.25% (32/346) with a higher prevalence in goats 13.59% (25/184) compared with sheep 4.32% (7/162). With respect to age of animals, goats >4 years had the highest prevalence of 32.45% (11/37) which differs significantly (P = 0.0059) compared with other age categories. Cross breed goats had a prevalence of 15.63% (5/32) compared with Kano brown breed 14.08 (20/142). Sex significant difference (P = 0.029) was observed in the goats with females having the highest prevalence 20.89% (14/67) compared with males 9.40% (11/117). Furthermore, with regards to sheep, no significant difference (P > 0.05) was observed with respect to age and breed. Finally, no significant difference (P > 0.05) was observed with the prevalence of Anaplasma spp. due to Body condition score (BCS) in both sheep and goats. Conclusively, the occurrence of TBPs in small ruminants is low. Continuous efforts in tick control must be sustained to ensure high productive yield and reduced disease burden associated with TBPs of sheep and goats in Kano metropolis.


Subject(s)
Goat Diseases , Rickettsia Infections , Theileria , Ticks , Anaplasma/genetics , Animals , Female , Goat Diseases/epidemiology , Goats/microbiology , Male , Nigeria/epidemiology , Rickettsia Infections/epidemiology , Rickettsia Infections/veterinary , Risk Factors , Ruminants , Sheep , Theileria/genetics , Ticks/microbiology
5.
Transbound Emerg Dis ; 69(5): e3289-e3296, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1854183

ABSTRACT

Wildlife animals may be susceptible to multiple infectious agents of public health or veterinary relevance, thereby potentially forming a reservoir that bears the constant risk of re-introduction into the human or livestock population. Here, we serologically investigated 493 wild ruminant samples collected in the 2021/2022 hunting season in Germany for the presence of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and four viruses pathogenic to domestic ruminants, namely, the orthobunyavirus Schmallenberg virus (SBV), the reovirus bluetongue virus (BTV) and ruminant pestiviruses like bovine viral diarrhoea virus or border disease virus. The animal species comprised fallow deer, red deer, roe deer, mouflon and wisent. For coronavirus serology, additional 307 fallow, roe and red deer samples collected between 2017 and 2020 at three military training areas were included. While antibodies against SBV could be detected in about 13.6% of the samples collected in 2021/2022, only one fallow deer of unknown age tested positive for anti-BTV antibodies, and all samples reacted negative for antibodies against ruminant pestiviruses. In an ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2, 25 out of 493 (5.1%) samples collected in autumn and winter 2021/2022 scored positive. This sero-reactivity could not be confirmed by the highly specific virus neutralisation test, occurred also in 2017, 2018 and 2019, that is, prior to the human SARS-CoV-2 pandemic, and was likewise observed against the RBD of the related SARS-CoV-1. Therefore, the SARS-CoV-2 sero-reactivity was most likely induced by another hitherto unknown deer virus belonging to the subgenus Sarbecovirus of betacoronaviruses.


Subject(s)
Bison , Bluetongue virus , Bluetongue , COVID-19 , Deer , Pestivirus , Sheep Diseases , Animals , Animals, Wild , Antibodies, Viral , COVID-19/epidemiology , COVID-19/veterinary , Humans , Ruminants , SARS-CoV-2 , Seroepidemiologic Studies , Sheep , Sheep, Domestic
6.
Acta Trop ; 225: 106217, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1486937

ABSTRACT

Informal livestock markets are an important source of animal-derived proteins for growing urban populations in countries such as Zambia. In parallel, they can also constitute pathways of zoonotic pathogen transmission to humans. This risk is aggravated by limited disease monitoring and poor control systems with regards to biosecurity and public health. The aim of this study was to investigate the risks for spread of zoonotic diseases in Zambia's two largest informal small ruminant markets, located in Lusaka and Kasumbalesa, through combining seroepidemiology with interviews and observations. In April, May and September 2018, serum samples (n = 237) were collected and analysed for antibodies for the zoonotic pathogens Brucella spp., Coxiella (C.) burnetii and Rift Valley fever virus (RVFV), using commercially available enzyme linked immunosorbent assays (ELISA). In addition, slaughterhouse activities were observed and semi-structured interviews and focus group discussions held with slaughterhouse workers and small ruminant traders, focusing on the handling of animals and meat, and the perceptions of zoonotic disease risks at slaughter and consumption. The study found seropositivity rates of 10.1% (95% confidence interval [CI] 6.60-14.7) for Brucella spp., 5.9% (95% CI 3.27-9.71) for C. burnetii, and 0.8% (95% CI 0.10-3.01) for RVFV. Interviews with value chain members and observations at the slaughterhouse revealed unsanitary procedures and multiple occupational hazards for slaughterhouse workers. This study showed that the Zambian informal small ruminant trade system poses risks to public health, and that these risks are exacerbated by a lack of information about food-borne diseases and how associated risks can be mitigated amongst value chain actors. The results of this study can be used to formulate preventive measures to improve informal meat markets and reduce the risks to public health.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Animals , Humans , Public Health , Ruminants , Seroepidemiologic Studies , Zambia/epidemiology , Zoonoses/epidemiology
7.
Vet Microbiol ; 252: 108933, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-966338

ABSTRACT

There is strong evidence that severe acute respiratory syndrome 2 virus (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, originated from an animal reservoir. However, the exact mechanisms of emergence, the host species involved, and the risk to domestic and agricultural animals are largely unknown. Some domestic animal species, including cats, ferrets, and minks, have been demonstrated to be susceptible to SARS-CoV-2 infection, while others, such as pigs and chickens, are not. Importantly, the susceptibility of ruminants to SARS-CoV-2 is unknown, even though they often live in close proximity to humans. We investigated the replication and tissue tropism of two different SARS-CoV-2 isolates in the respiratory tract of three farm animal species - cattle, sheep, and pigs - using respiratory ex vivo organ cultures (EVOCs). We demonstrate that the respiratory tissues of cattle and sheep, but not of pigs, sustain viral replication in vitro of both isolates and that SARS-CoV-2 is associated to ACE2-expressing cells of the respiratory tract of both ruminant species. Intriguingly, a SARS-CoV-2 isolate containing an amino acid substitution at site 614 of the spike protein (mutation D614G) replicated at higher magnitude in ex vivo tissues of both ruminant species, supporting previous results obtained using human cells. These results suggest that additional in vivo experiments involving several ruminant species are warranted to determine their potential role in the epidemiology of this virus.


Subject(s)
Organ Culture Techniques , Respiratory System/virology , Ruminants/virology , SARS-CoV-2/physiology , Viral Tropism , Virus Replication , Angiotensin-Converting Enzyme 2/genetics , Animals , Cattle/virology , Host Specificity , SARS-CoV-2/genetics , Sheep/virology , Swine/virology
SELECTION OF CITATIONS
SEARCH DETAIL